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Relations: what are they?

• Relations are records of related facts or properties for each 
entity in the entity set

• How the facts are related is defined through the list of 
attributes

• The facts themselves are represented as tuples of values –
one value for each attribute



Facts required to be different –
relation is a SET

• There are no two completely identical tuples in a given 
relations

• Each relation is a set of tuples – no duplicates



Student

Consider an example

Student (name, country, GPA)

Couse (topic, year)

Professor (name, topic)

RegisteredFor (name, topic)

Teaches (name, topic)

Professor

GPAname

name rank

country

Course

yearname



Sample instances for each relation

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

Professor

Name Rank

Dr. Monk Professor

Dr. Pooh Associate Professor

Dr. Patel Assistant Professor

Course

Topic Year

Algorithms 2

Python 2

Databases 3

GUI 3

Teaches

Name Topic

Dr. Monk Algorithms

Dr. Pooh Python

Dr. Patel Databases

Dr. Patel GUI

RegisteredFor

Name Topic

Bob Algorithms

John Algorithms

Tom Algorithms

Bob Python

Tom Python

Bob Databases

John Databases

Maria Databases

John GUI

Maria GUI



Core operators of 
relational algebra



Slice operators: Projection

S=attribute list(R)



Produces from relation R a new 
relation that has only the A1, …, 
An columns of R. 



Projection: example
Query: list names of students

Student

SIN Name GPA Country

111 Bob 3 Canada

222 John 3 Britain

333 Tom 3.5 Canada

444 Maria 4 Mexico

S = Name(Student)

S

Name

Bob

John

Tom

Maria



Slice operators: Selection

S=condition ( R )

Produces a new relation with those 
tuples of R which satisfy condition 
C. 



Selection example. 
Query: list students with GPA >3

Student

Name GPA Country

Bob 3 Canada

John 3 Britain

Tom 3.5 Canada

Maria 4 Mexico

S = gpa>3 (Student)

S

Name GPA Country

Tom 3.5 Canada

Maria 4 Mexico



Join operation: Cartesian product (Cross-
product)

T=R x S

X

1. Set of tuples rs that are formed  
by choosing the first part (r) to be 
any tuple of R and the second part 
(s) to be any tuple of S. 

2.Schema for the resulting relation 
is the union of schemas for R and S. 

3.If R and S happen to have some 
attributes in common, then prefix 
those attributes by the relation 
name.



Cartesian product example

T=Course x Professor

Professor

Name Rank

Dr. Monk Professor

Dr. Pooh Associate Professor

Dr. Patel Assistant Professor

Course

Topic Year

Algorithms 2

Python 2

Databases 3

GUI 3



Cartesian product output

Algorithms 2

Python 2

Databases 3

GUI 3

Topic Y Name Rank

Algorithms 2 Dr. Monk Professor

Algorithms 2 Dr. Pooh Assoc. Professor

Algorithms 2 Dr. Patel Assist. Professor

Python 2 Dr. Monk Professor

Python 2 Dr. Pooh Assoc. Professor

Python 2 Dr. Patel Assist. Professor

Databases 3 Dr. Monk Professor

Databases 3 Dr. Pooh Assoc. Professor

Databases 3 Dr. Patel Assist. Professor

GUI 3 Dr. Monk Professor

GUI 3 Dr. Pooh Assoc. Professor

GUI 3 Dr. Patel Assist. Professor



1.The result is constructed as 
follows:

a)Take the Cartesian product 
of R and S.

b) Select from the product 
only those tuples that satisfy 
the condition C.

2.Schema for the result is the 
union of the schema of R and S,
with “R” or “S” prefix as 
necessary.

Combining Cross-product with 
selection 

T=σcondition (R x S)

X

σ



Example. 
Query: Dr. Monk wonders whether he has to teach a multi-cultural group of 
students

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4 Teaches

Name Topic

Dr. Monk Algorithms

Dr. Pooh Python

Dr. Patel Databases

Dr. Patel GUI

RegisteredFor

Name Topic

Bob Algorithms

John Algorithms

Tom Algorithms

Bob Python

Tom Python

Bob Databases

John Databases

Maria Databases

John GUI

Maria GUI



Multi-cultural class 
Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

AlgoList

Name Topic

Bob Algorithms

John Algorithms

Tom Algorithms

AlgoList =σTopic=Algorithms (RegisteredFor)



Multi-cultural class 
Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

AlgoList

Name Topic

Bob Algorithms

John Algorithms

Tom Algorithms

AlgoList =σTopic=Algorithms (RegisteredFor)

ClassInfo= σ Student.name=AlgoList.name AlgoList x Student

ClassInfo

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5



Multi-cultural class 
Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

AlgoList

Name Topic

Bob Algorithms

John Algorithms

Tom Algorithms

AlgoList =σTopic=Algorithms (RegisteredFor)

Countries=π country (ClassInfo)

ClassInfo

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Countries

Country

Canada

BritainClassInfo= σ Student.name=AlgoList.name AlgoList x Student



Cross-product with selection 

T=σcondition (R x S)

X

σ



T= R       condition S

Shortcut: Theta-join 

Shortcut for
T=σcondition (R x S)

X

σ

1.The result of this operation is 
constructed as follows:

a)Take the Cartesian product 
of R and S.

b) Select from the product 
only those tuples that satisfy 
the condition C.

2.Schema for the result is the 
union of the schema of R and S,
with “R” or “S” prefix as necessary.



T= R       R.A = S.B S

Subtype of theta-join: Equijoin

Shortcut for
T=σ R.A = S.B (R x S)

X

σ

1.Equijoin is a subset of 
theta-joins where the join 
condition is equality



R      S

Let A1, A2,…,An be the attributes in both the schema of R and 
the schema of S. 

Then a tuple r from R and a tuple s from S are successfully 
paired if and only if r and s agree on each of their common 
attributes A1, A2, …, An. 

Special case of equijoin: 
Natural Join

Still the same meaning as:
T=σ R.A = S.A (R x S),
but common attributes are not duplicated as in Cartesian 
Product



Set Operations on Relations

R  S, the union of R and S, is the set of tuples that are in R 
or S or both. 

R  S, the difference of R and S, is the set of tuples that are 
in R but not in S. 

Note that R  S is different from S  R.

R  S, the intersection of R and S, is the set of tuples that 
are in both R and S.



Condition for set operators

Set operators can operate only on two union-compatible 
relations

Two relations are union-compatible if they have the same 
number of attributes and each attribute must be from the 
same domain



Union

T=R  S

R S

R U S



Union example.
Query: list names of all people in the department

Can we do ?
T=Student  Professor

Student

Name Country GPA

Bob Canada 3

John Britain 3

Tom Canada 3.5

Maria Mexico 4

Professor

Name Rank

Dr. Monk Professor

Dr. Pooh Associate Professor

Dr. Patel Assistant Professor



Union example.
Query: list names of all people in the department

Student

Name

Bob

John

Tom

Maria

Professor

Name

Dr. Monk

Dr. Pooh

Dr. Patel

T=  name (Student)   name (Professor)

Note: if attributes in 2 operands have different names, the names of the left 
relation are used in the union (PostgreSQL)



Difference

R  S

R - S

R S



Difference example. 
Query: Who is registered in the Database course but not in the 
Algorithms?

RegisteredFor

Name Topic

Bob Algorithms

John Algorithms

Tom Algorithms

Bob Python

Tom Python

Bob Databases

John Databases

Maria Databases

John GUI

Maria GUI

First do some selections:
A=σ topic=algorithms (RegisteredFor)
D=σ topic=databases (RegisteredFor)

Then take D – A



Intersection

T=R  S
R S

R S

R  S



Intersection example. 
Query: Which courses are taught at both Universities?

Course

Topic

Algorithms

Python

Databases

GUI

Alright University

Course

Topic

Algorithms

Java

Databases

Networks

Human-Computer Interaction

EvenBetter University

T=  topic (A.course)   topic (B.course)



Intersection is a shortcut for R – (R – S)

R S

R-S

R - S (are in R but not in S)

R S

R - (R-S)

R  S
R  S can be 
derived using 
2 difference 
operators
R – (R – S)



Renaming Operator

S(A1,A2,…,An) (R)

1. Resulting relation has exactly the same tuples as R, but the 
name of the relation is S. 

2. Moreover, the attributes of the result relation S can be re-
named A1, A2, …, An, in order from the left. 

3. If not all attributes are renamed, can specify renamed 
attributes:

S, a → a1, b → b1 (R)



Renaming: example

• Find all true friends in twitter 
dataset

• By renaming T we created two 
identical relations R and S, and we 
now extract all tuples where for 
each pair X → Y in R there is a pair 
Y → X in S

T (uid1, uid2)

A → B
B → A
B → C
A → C
C → B

πR.uid1, R.uid2 σR.uid1=S.uid2 AND R.uid2 = S.uid1(R (T) x S (T)) 



Core operators of relational 
algebra

Selection σ

Projection π

Cross-product x

Union U
Difference –
Renaming ρ



Core operators – sufficient to express 
any query in relational model

Edgar “Ted” Codd, a mathematician at IBM in 1970, proved 
that any query can be expressed using these core operators: 
σ, π, x, U, –, ρ

A Relational Model of Data for Large Shared Data 
Banks". Communications of the ACM 13 (6): 377–387

The Relational model is precise, implementable, and we 
can operate on it (combine, optimize)

http://www.acm.org/classics/nov95/toc.html
http://en.wikipedia.org/wiki/Communications_of_the_ACM


The same applies to relational algebra: any RA operator returns 
a relation, so we can compose complex queries by operating 
on these intermediate results:

πname,gpa(σgpa>3.5(Student))

σgpa>3.5(πname,gpa( Student))

Are these logically equivalent?

Relational algebra: closure
In regular algebra the result of every operator is another 
number, and we can compose complex expressions using basic 
operators +,-,x,/:

a2 –b2 = (a-b)x(a+b)



Relational algebra equivalences

• Commutative: R ⋈ S = S ⋈ R 

• Associative: (R ⋈ S) ⋈ T = R ⋈ (S ⋈ T)

• Splitting: σC ∩ D (R) = σC (σD (R))

• Pushing selections: σC (R ⋈D S) = σC (R) ⋈D (S), if condition C 
applies only to R

• …



Example of a valid RA transformation

• Consider R(A,B) and S(B,C) and the expression below:

A=1 ∩ B<C (R ⋈ S) 

1. Splitting AND A=1 (B < C(R ⋈ S))

2. Push  to S A=1 (R ⋈ B < C(S))

3. Push  to R A=1 (R) ⋈ B < C(S)



Intermediate variables

As in traditional algebra,

x2 +2x +1 = 0

D = 4 – 4 = 0

x = -2 + √D = -2

we can use temporary variables to store the results of 

intermediate queries. These temporary variables hold results of 

what is called a subquery

T1 = A=1 (R) 

T2 = B < C(S)

Result = T1 ⋈ T2



We can visualize an RA expression as 
a tree

π𝐵

R(A,B) S(B,C)

π𝐵(𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 )

Bottom-up tree traversal = order of operation execution! 

Linear notation

Tree notation



Why do we care 
about relational algebra?

Why not learn just SQL?

SQL is a query language that implements Relational Algebra



16 double discriminant = Math.pow(b,2) - 4*a*c;

17 double x1 = (-b + Math.sqrt(discriminant))/(2*a);

18 double x2 = (-b - Math.sqrt(discriminant))/(2*a);

19 double i=Math.sqrt(-1);

20 double x3 = (-b + (Math.sqrt(discriminant))*i)/(2*a);

21 double x4 = (-b + (Math.sqrt(discriminatn))*i)/(2*a);

22

23

24 if (discriminat > 0 ){

25 System.out.println("there are two solutions:" +x1+"and"+x2);

26 }

Why not learn how to solve quadratic 
equations looking only at a java 
implementation?



RA is a basis for logical query 
optimization

title

starname=name AND birthdate LIKE ‘%1960’

StarsIn



MovieStar

title

StarsIn MovieStar

starName=name

birthdate LIKE ‘%1960’

Which query is more efficient?



Extended operators of 
Relational Algebra
can be derived from core operators



Outer join

Motivation
• Suppose we join R ⋈ S.
• A tuple of R which doesn't join with any tuple of S is said to 

be dangling.
• Similarly for a tuple of S.
• Problem: We loose dangling tuples. 

Outerjoin
• Preserves dangling tuples by padding them with a special 

NULL symbol in the result.



• R      C S – This is the full outerjoin: Pad dangling tuples from 
both tables.

• R      C S – left outerjoin: Only pad dangling tuples from the left 
table.

• R      C S – right outerjoin: Only pad dangling tuples from the 
right table.

Types of outer join



T= R       condition S

Left outer join

1. For each tuple in R, include 
all tuples in S which satisfy 
join condition, but include 
also tuples of R that do not 
have matches in S

2. For this case, pair tuples of 
R with NULL

X

NULL

σ



Outer join: example

age zip disease

54 99999 heart

20 44444 flue

33 66666 lung

age zip job

54 99999 lawyer

20 44444 cashier

Anonymous patient P Anonymous occupation O

age zip disease job

54 99999 heart lawyer

20 44444 flue cashier

33 66666 lung NULL

T= P        O



Estimating size of 
resulting relations



Size estimation example 1
Given relation R with N tuples and relation S with M tuples, what is the 
maximum and minimum size of the output to the following queries:

c (R)

• Min: 0 (no tuples satisfy the condition)

• Max: N

π A (R)

• Min: 1

• Max: N

What if A is a key?

• Min: N

• Max: N



Size estimation example 2

Given relation R (A,B) with N tuples and relation S(B,C) with M 
tuples, tell what is the maximum and minimum size of the 
output to the following queries

R x S

• Min: NM

• Max: NM

R ⋈ S

• Min: 0 (no tuples to join)

• Max: NM (all tuples of S join with all tuples of R on their 
common attribute – equal values of B in both relations )



Sample test question

If I have a relation R with 100 tuples and a relation S with 
exactly 1 tuple, how many tuples will be in the result of 

R         S?

A. At least 100, but could be more

B. Could be any number between 0 and 100 inclusive

C. 0

D. 1

E. 100


