CMPT 321 Fall 2017

Relational algebra

Lecture 02.01

By Marina Barsky

Relations: what are they?

- Relations are records of related facts or properties for each entity in the entity set
- How the facts are related is defined through the list of attributes
- The facts themselves are represented as tuples of values one value for each attribute

Facts required to be different – relation is a SET

- There are no two completely identical tuples in a given relations
- Each relation is a **set** of tuples no duplicates

Consider an example

Sample instances for each relation

Student					
Name	Country	GPA			
Bob	Canada	3			
John	Britain	3			
Tom	Canada	3.5			
Maria	Mexico	4			

Course					
Topic Year					
Algorithms	2				
Python	2				
Databases	3				
GUI	3				

RegisteredFor			
Name Topic			
Bob	Algorithms		
John	Algorithms		
Tom	Algorithms		
Bob	Python		
Tom	Python		
Bob	Databases		
John	Databases		
Maria	Databases		
John	GUI		
Maria	GUI		

Professor			
Name	Rank		
Dr. Monk Professor			
Dr. Pooh	Associate Professor		
Dr. Patel	Assistant Professor		

Teaches					
Name Topic					
Dr. Monk	Algorithms				
Dr. Pooh	Python				
Dr. Patel	Databases				
Dr. Patel	GUI				

Core operators of *relational* algebra

Slice operators: Projection

Produces from relation **R** a new relation that has only the A_1 , ..., A_n columns of **R**.

Projection: example Query: list names of students

Student							
SIN Name GPA Country							
111	Bob	3	Canada				
222	John	3	Britain				
333	Tom	3.5	Canada				
444 Maria 4 Mexico							

 $S = \pi_{Name}(Student)$

Slice operators: Selection

Produces a new relation with those tuples of **R** which satisfy condition **C**.

σ

Selection example. Query: list students with GPA >3

Student						
Name GPA Country						
Bob	3 Canada					
John	ohn 3 Britain					
Tom	3.5	Canada				
Maria	Maria 4 Mexico					

S					
Name	GPA	Country			
Tom	3.5	Canada			
Maria	4	Mexico			

S =
$$\sigma_{gpa>3}$$
 (Student)

Join operation: Cartesian product (Crossproduct)

1. Set of tuples *rs* that are formed by choosing the first part (*r*) to be any tuple of **R** and the second part (*s*) to be any tuple of **S**.

2.Schema for the resulting relation is the union of schemas for **R** and **S**.

3.If **R** and **S** happen to have some attributes in common, then prefix those attributes by the relation name.

X

Cartesian product example

T=Course x Professor

Course				
Торіс	Year			
Algorithms	2			
Python	2			
Databases	3			
GUI	3			

Professor			
Name Rank			
Dr. Monk	Professor		
Dr. Pooh	Associate Professor		
Dr. Patel Assistant Professor			

Cartesian product output

		Dr. M	Dr.	Dr.	Торіс	Y	Name	Rank
					Algorithms	2	Dr. Monk	Professor
		Monk	Pooh	Patel	Algorithms	2	Dr. Pooh	Assoc. Professor
			As Pr	PP	Algorithms	2	Dr. Patel	Assist. Professor
		Professor	Associate Professor	ssist rofe	Python	2	Dr. Monk	Professor
		sor	Associate Professor	Assistant Professor	Python	2	Dr. Pooh	Assoc. Professor
	1				Python	2	Dr. Patel	Assist. Professor
Algorithms	2		 		Databases	3	Dr. Monk	Professor
Python	2				Databases	3	Dr. Pooh	Assoc. Professor
Databases	3				Databases	3	Dr. Patel	Assist. Professor
GUI	3				GUI	3	Dr. Monk	Professor
					GUI	3	Dr. Pooh	Assoc. Professor
					GUI	3	Dr. Patel	Assist. Professor

Combining Cross-product with selection

1.The result is constructed as follows:

a)Take the Cartesian product of **R** and **S**.

b) Select from the product only those tuples that satisfy the condition **C**.

2.Schema for the result is the union of the schema of **R** and **S**, with **"R"** or **"S"** prefix as necessary.

$$T = \sigma_{condition} (R \times S)$$

Example.

Query: Dr. Monk wonders whether he has to teach a multi-cultural group of students

Student		
Name	Country	GPA
Bob	Canada	3
John	Britain	3
Tom	Canada	3.5
Maria	Mexico	4

Teaches		
Name Topic		
Dr. Monk Algorithms		
Dr. Pooh	Python	
Dr. Patel	Databases	
Dr. Patel	GUI	

RegisteredFor		
Name	Торіс	
Bob	Algorithms	
John	Algorithms	
Tom	Algorithms	
Bob	Python	
Tom	Python	
Bob	Databases	
John Databases		
Maria	Databases	
John	GUI	
Maria	GUI	

Multi-cultural class

Student		
Name	Country	GPA
Bob	Canada	3
John	Britain	3
Tom	Canada	3.5
Maria	Mexico	4

AlgoList	
Name Topic	
Bob	Algorithms
John Algorithms	
Tom Algorithms	

AlgoList = $\sigma_{\text{Topic=Algorithms}}$ (RegisteredFor)

Multi-cultural class

Student		
Name	Country	GPA
Bob	Canada	3
John	Britain	3
Tom	Canada	3.5
Maria	Mexico	4

AlgoList		
Name Topic		
Bob Algorithms		
John Algorithms		
Tom Algorithms		

ClassInfo		
Name	Country	GPA
Bob	Canada	3
John	Britain	3
Tom	Canada	3.5

AlgoList = $\sigma_{\text{Topic=Algorithms}}$ (RegisteredFor)

ClassInfo= o Student.name=AlgoList.name AlgoList x Student

Multi-cultural class

Student		
Name	Country	GPA
Bob	Canada	3
John	Britain	3
Tom	Canada	3.5
Maria	Mexico	4

AlgoList		
Name Topic		
Bob Algorithms		
John Algorithms		
Tom Algorithms		

ClassInfo		
Name	Country	GPA
Bob	Canada	3
John	Britain	3
Tom	Canada	3.5

AlgoList = $\sigma_{\text{Topic=Algorithms}}$ (RegisteredFor)

ClassInfo= o_{Student.name=AlgoList.name} AlgoList x Student

Countries=π_{country} (ClassInfo)

Cross-product with selection

Shortcut: Theta-join

1. The result of this operation is constructed as follows:

a)Take the Cartesian product of **R** and **S**.

b) Select from the product only those tuples that satisfy the condition **C**.

2.Schema for the result is the union of the schema of **R** and **S**, with "**R**" or "**S**" prefix as necessary.

T= R 🖂 condition S

Shortcut for $T=\sigma_{condition}$ (R x S)

Subtype of theta-join: Equijoin

1.Equijoin is a subset of theta-joins where the join condition is equality

T= R $\bowtie_{R.A = S.B} S$ Shortcut for T= $\sigma_{R.A = S.B}$ (R x S)

Special case of equijoin: Natural Join

Let $A_1, A_2, ..., A_n$ be the attributes in both the schema of **R** and the schema of **S**.

Then a tuple r from **R** and a tuple s from **S** are successfully paired if and only if r and s agree on each of their common attributes $A_1, A_2, ..., A_n$.

Still the same meaning as:

 $T=\sigma_{R,A=S,A}$ (R x S),

but common attributes are not duplicated as in Cartesian Product

Set Operations on Relations

 $\mathbf{R} \cup \mathbf{S}$, the **union** of **R** and **S**, is the set of tuples that are in **R** or **S** or both.

R – **S**, the **difference** of **R** and **S**, is the set of tuples that are in **R** but not in **S**.

Note that $\mathbf{R} - \mathbf{S}$ is different from $\mathbf{S} - \mathbf{R}$.

 $R \cap S$, the intersection of R and S, is the set of tuples that are in both R and S.

Condition for set operators

Set operators can operate only on two union-compatible relations

Two relations are **union-compatible** if they have the same number of attributes and each attribute must be from the same domain

Union

 $\textbf{T=R} \cup \textbf{S}$

Union example. Query: list names of all people in the department

Student		
Name	Country	GPA
Bob	Canada	3
John	Britain	3
Tom	Canada	3.5
Maria	Mexico	4

Professor	
Name	Rank
Dr. Monk	Professor
Dr. Pooh	Associate Professor
Dr. Patel	Assistant Professor

Can we do ? T=Student ∪ Professor

Union example.

Query: list names of all people in the department

T= π_{name} (Student) $\cup \pi_{name}$ (Professor)

Note: if attributes in 2 operands have different names, the names of the left relation are used in the union (PostgreSQL)

Difference

R – S

Difference example.

Query: Who is registered in the Database course but not in the Algorithms?

S

 $R \cap S$

Intersection example.

Query: Which courses are taught at both Universities?

Alright University

Course	
Торіс	
Algorithms	
Python	
Databases	
GUI	

EvenBetter University
Course
Торіс
Algorithms
Java
Databases
Networks
Human-Computer Interaction

T= π_{topic} (A.course) $\cap \pi_{\text{topic}}$ (B.course)

Intersection is a shortcut for R - (R - S)

 $R \cap S$ can be derived using 2 difference operators R - (R - S)

Renaming Operator

$\rho_{\text{S(A1,A2,...,An)}}\left(\textbf{R}\right)$

- 1. Resulting relation has exactly the same tuples as **R**, but the name of the relation is **S**.
- 2. Moreover, the attributes of the result relation **S** can be renamed $A_1, A_2, ..., A_n$, in order from the left.
- 3. If not all attributes are renamed, can specify renamed attributes:

 $\rho_{\text{S, a} \rightarrow \text{a1, b} \rightarrow \text{b1}} \left(\textbf{R} \right)$

Renaming: example

T (uid1, uid2)

- Find all true friends in twitter dataset
- By renaming T we created two identical relations R and S, and we now extract all tuples where for each pair X → Y in R there is a pair Y → X in S

 $\pi_{\text{R.uid1, R.uid2}} \sigma_{\text{R.uid1=S.uid2 AND R.uid2 = S.uid1}}(\rho_{\text{R}} (\text{T}) \times \rho_{\text{S}} (\text{T}))$

Core operators of relational algebra

Selection o

Cross-product x

Union U Difference – Renaming p Core operators – sufficient to express any query in relational model

Edgar "Ted" Codd, a mathematician at IBM in 1970, proved that any query can be expressed using these core operators: σ , π , x, U, –, ρ

<u>A Relational Model of Data for Large Shared Data</u> <u>Banks</u>". <u>*Communications of the ACM*</u> **13** (6): 377–387

The Relational model is **precise**, **implementable**, and we can operate on it (combine, optimize)

Relational algebra: closure

In regular algebra the result of every operator is another number, and we can compose complex expressions using basic operators +,-,x,/:

$a^2 - b^2 = (a-b)x(a+b)$

The same applies to relational algebra: any RA operator returns a relation, so we can compose complex queries by operating on these intermediate results:

 $\pi_{\text{name,gpa}}(\sigma_{\text{gpa}>3.5}(\text{Student}))$

Are these logically equivalent?

 $\sigma_{gpa>3.5}(\pi_{name,gpa}(Student))$

Relational algebra equivalences

- Commutative: $R \bowtie S = S \bowtie R$
- Associative: $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$
- Splitting: $\sigma_{C \cap D}(R) = \sigma_{C}(\sigma_{D}(R))$
- Pushing selections: $\sigma_C(R \bowtie_D S) = \sigma_C(R) \bowtie_D(S)$, if condition C applies only to R

Example of a valid RA transformation

- Consider R(A,B) and S(B,C) and the expression below: $\sigma_{A=1 \cap B < C} (R \bowtie S)$
- 1. Splitting **AND** $\sigma_{A=1}(\sigma_{B < C}(R \bowtie S))$
- 2. Push σ to S $\sigma_{A=1}(R \bowtie \sigma_{B < C}(S))$
- 3. Push σ to R $\sigma_{A=1}(R) \bowtie \sigma_{B < C}(S)$

Intermediate variables

As in traditional algebra,

 $x^2 + 2x + 1 = 0$

D = 4 - 4 = 0

 $x = -2 \pm \sqrt{D} = -2$

we can use *temporary variables* to store the results of intermediate queries. These temporary variables hold results of what is called a *subquery*

 $T_{1} = \sigma_{A=1}(R)$ $T_{2} = \sigma_{B < C}(S)$ $Result = T_{1} \bowtie T_{2}$

We can visualize an RA expression as a tree

Bottom-up tree traversal = order of operation execution!

Why do we care about relational algebra?

Why not learn just SQL?

SQL is a query language that implements Relational Algebra

Why not learn how to solve quadratic equations looking only at a java implementation?

```
16 double discriminant = Math.pow(b,2) - 4*a*c;
```

```
17 double x1 = (-b + Math.sqrt(discriminant))/(2*a);
```

```
18 double x2 = (-b - Math.sqrt(discriminant))/(2*a);
```

```
19 double i=Math.sqrt(-1);
```

```
20 double x3 = (-b + (Math.sqrt(discriminant))*i)/(2*a);
```

```
21 double x4 = (-b + (Math.sqrt(discriminatn))*i)/(2*a);
```

```
22
```

```
23
```

```
24 if (discriminat > 0 ){
```

25 System.out.println("there are two solutions:" +x1+"and"+x2);

```
26 }
```

RA is a basis for logical query optimization

Extended operators of Relational Algebra

can be derived from core operators

Outer join

Motivation

- Suppose we join $R \bowtie S$.
- A tuple of *R* which doesn't join with any tuple of *S* is said to be *dangling*.
 - Similarly for a tuple of S.
 - **Problem**: We loose dangling tuples.

Outerjoin

 Preserves dangling tuples by padding them with a special NULL symbol in the result.

Types of outer join

- R → C S This is the full outerjoin: Pad dangling tuples from both tables.
- R ⊂ S left outerjoin: Only pad dangling tuples from the left table.
- R[•] → C S right outerjoin: Only pad dangling tuples from the right table.

Left outer join

1. For each tuple in R, include all tuples in S which satisfy join condition, but include also tuples of R that do not have matches in S

2. For this case, pair tuples of R with NULL

Outer join: example

Anonymous patient P

age	zip	disease	
54	99999	heart	
20	44444	flue	
33	66666	lung	

Anonymous occupation O

age	zip	job
54	99999	lawyer
20	44444	cashier

T= P 🖂 O

age	zip	disease	job
54	99999	heart	lawyer
20	44444	flue	cashier
33	66666	lung	NULL

Estimating size of resulting relations

Size estimation example 1

Given relation R with N tuples and relation S with M tuples, what is the maximum and minimum size of the output to the following queries:

 $\sigma_{c}(R)$

- Min: 0 (no tuples satisfy the condition)
- Max: N

$\pi_A(R)$

- Min: 1
- Max: N

What if A is a key?

- Min: N
- Max: N

Size estimation example 2

Given relation R (A,B) with N tuples and relation S(B,C) with M tuples, tell what is the maximum and minimum size of the output to the following queries

R x S

- Min: NM
- Max: NM

$R \bowtie S$

- Min: 0 (no tuples to join)
- Max: NM (all tuples of S join with all tuples of R on their common attribute – equal values of B in both relations)

Sample test question

If I have a relation R with 100 tuples and a relation S with exactly 1 tuple, how many tuples will be in the result of R >> S?

- A. At least 100, but could be more
- B. Could be any number between 0 and 100 inclusive
- C. 0
- D. 1
- E. 100